On a class of boundary value problems involving the p-biharmonic operator
نویسنده
چکیده
A nonlinear boundary value problem involving the p-biharmonic operator is investigated, where p > 1. It describes various problems in the theory of elasticity, e.g. the shape of an elastic beam where the bending moment depends on the curvature as a power function with exponent p− 1. We prove existence of solutions satisfying a quite general boundary condition that incorporates many particular boundary conditions which are frequently considered in the literature. MSC: 34B15, 34A60
منابع مشابه
Existence results of infinitely many solutions for a class of p(x)-biharmonic problems
The existence of infinitely many weak solutions for a Navier doubly eigenvalue boundary value problem involving the $p(x)$-biharmonic operator is established. In our main result, under an appropriate oscillating behavior of the nonlinearity and suitable assumptions on the variable exponent, a sequence of pairwise distinct solutions is obtained. Furthermore, some applications are pointed out.
متن کاملINFINITELY MANY SOLUTIONS FOR A CLASS OF P-BIHARMONIC PROBLEMS WITH NEUMANN BOUNDARY CONDITIONS
The existence of infinitely many solutions is established for a class of nonlinear functionals involving the p-biharmonic operator with nonhomoge- neous Neumann boundary conditions. Using a recent critical-point theorem for nonsmooth functionals and under appropriate behavior of the nonlinear term and nonhomogeneous Neumann boundary conditions, we obtain the result.
متن کاملMultiple solutions for a perturbed Navier boundary value problem involving the $p$-biharmonic
The aim of this article is to establish the existence of at least three solutions for a perturbed $p$-biharmonic equation depending on two real parameters. The approach is based on variational methods.
متن کاملExistence of three positive solutions for nonsmooth functional involving the p-biharmonic operator
This paper is concerned with the study of the existence of positive solutions for a Navier boundaryvalue problem involving the p-biharmonic operator; the right hand side of problem is a nonsmoothfunctional with variable parameters. The existence of at least three positive solutions is establishedby using nonsmooth version of a three critical points theorem for discontinuous functions. Our resul...
متن کاملExistence of at least one nontrivial solution for a class of problems involving both p(x)-Laplacian and p(x)-Biharmonic
We investigate the existence of a weak nontrivial solution for the following problem. Our analysis is generally bathed on discussions of variational based on the Mountain Pass theorem and some recent theories one the generalized Lebesgue-Sobolev space. This paper guarantees the existence of at least one weak nontrivial solution for our problem. More precisely, by applying Ambrosetti and Rabinow...
متن کامل